Les ondes gravitationnelles ont été prédites par Albert Einstein voici un siècle exactement, dans sa théorie de la relativité générale. Pour le génial physicien, il s'agit des déformations de la trame de l'espace-temps, déformations induites par les masses en mouvement, un peu comme un caillou lancé dans l'eau créé des ondes qui se dissipent progressivement. On le sait, l'espace-temps einsteinien est courbe, courbe et lisse. Mais si une masse se déplace dans le cosmos, elle creuse l'espace-temps et le ride. Ces rides, ces ondes gravitationnelles, se propagent, comme la lumière, à 300 000 kilomètres par seconde. Sauf que, jusqu'à ce jour, elles n'avaient jamais été observées. Les preuves que la relativité générale est aujourd'hui et depuis cent ans la théorie la plus précise et la plus féconde pour expliquer le cosmos à grande échelle sont légions : l'espace-temps courbe relativiste a été testé jusqu'à de sidérantes, sidérales précisions. Mais les ondes gravitationnelles, extraordinairement ténues, Einstein lui-même pensait qu'on ne les détecterait jamais...
Ligo est constitué de deux interféromètres, situés de part et d'autre des Etats-Unis, à 3000 kilomètres l'un de l'autre, l'un au nord ouest, à Hanford, état de Washington (sur cette image), l'autre au sud est, à Livingstone, en Louisiane, non loin de la ville de Baton Rouge. Les deux instruments, identiques, ont été conçus en 1992, et mis en service en 2005. Photo Ligo/NSF.
Car les ondes gravitationnelles, on a cherché à les détecter, dès 1960. Et à la fin du XX e siècle, les scientifiques ont mis les bouchées doubles, en construisant trois immenses instruments, Ligo et Virgo. Des instruments identiques dans leur principe : il s'agissait de mesurer avec une précision absolue la distance entre deux masses tests, afin de détecter l'éventuelle passage d'une onde gravitationnelle, celle-ci, déformant l'espace pendant son passage, changerait imperceptiblement la distance entre ces deux masses. Pour ce faire les physiciens ont donc conçu des interféromètres de Michelson géants, c'est à dire des bancs optiques en forme de L, aux deux bras perpendiculaires, longs de 4 kilomètres pour Ligo, de 3 kilomètres pour Virgo, à l'extrémité desquels se trouvent les masses tests, à savoir des miroirs... Dans ces deux bras, soumis à un vide spatial, un faisceau laser circule continuellement. Les faisceaux réfléchis par chaque miroir sont mis en phase, les opticiens disent qu'ils forment des franges d'interférence.
C'est en observant ces franges, qui doivent rester immobiles, que les physiciens attendent le passage d'une onde gravitationnelle. Un déphasage – correspondant à une distance parcourue moindre ou supérieure par le laser – était censée signer la déformation spatio-temporelle induite par le passage de l'onde...
Décrit comme cela, ça à l'air tout simple, mais en réalité, cette expérience de physique était un pari fou... Car des quatre « forces de la nature » l'électromagnétisme, les champs nucléaires fort et faible et la gravitation, cette dernière est de très loin la plus faible : la gravitation est cent milliards de milliards de milliards de milliards (10 puissance 38) de fois plus faible que la force nucléaire qui lie les noyaux atomiques... La gravitation ne se fait sentir qu'en présence de masses considérables, comme les planètes, les étoiles, les trous noirs...
Décrit comme cela, ça à l'air tout simple, mais en réalité, cette expérience de physique était un pari fou... Car des quatre « forces de la nature » l'électromagnétisme, les champs nucléaires fort et faible et la gravitation, cette dernière est de très loin la plus faible : la gravitation est cent milliards de milliards de milliards de milliards (10 puissance 38) de fois plus faible que la force nucléaire qui lie les noyaux atomiques... La gravitation ne se fait sentir qu'en présence de masses considérables, comme les planètes, les étoiles, les trous noirs...
Cette observation extraordinaire ouvre probablement une nouvelle ère de l'astronomie et de la physique. Les chercheurs espèrent, dans les mois qui viennent et avec la mise en route de Advanced Virgo, pouvoir, avec les trois instruments de Ligo et Virgo ensemble, détecter et repérer plus précisément de nouveaux événements gravitationnels : explosions de supernovae, fusions d'étoiles à neutrons, fusion de trous noirs... Si ces événements sont rarissimes, le volume d'espace gigantesque embrassé par Ligo et Virgo promet, en principe, de nombreuses observations par an. Alain Riazuelo, chercheur à l'Institut d'Astrophysique de Paris, spécialiste de la modélisation des trous noirs, est optimiste : « Les anciennes versions de Ligo et Virgo n'avaient peut-être qu'une chance par siècle de détecter quelque chose. C'était trop peu, d'ailleurs, ils n'ont rien trouvé... Avec Advanced Ligo et Advanced Virgo, on devrait passer à une coalescence d'étoiles à neutrons ou de trous noirs par mois, voire par semaine. La prochaine génération d'interféromètres, comme le Einstein Telescope, dont les bras mesureront dix kilomètres, pourrait permettre d'observer l'Univers entier, alors, on pourrait avoir une découverte par jour, puis pourquoi pas, une toutes les heures... ».
Cette nouvelle fenêtre sur l'Univers, entr'ouverte aujourd'hui, devrait à l'avenir s'ouvrir toute grande : un clone de Ligo, Ligo India, doit être installé bientôt en Inde, les Japonais terminent la construction de leur propre télescope gravitationnel, Kagra, dans la mine de Kamioka, à côté du détecteur de neutrinos SuperKamiokande, et l'Europe, après ce spectaculaire succès, devrait bientôt donner le feux vert au télescope Einstein, un « super Virgo » actuellement à l'étude.
Cette nouvelle fenêtre sur l'Univers, entr'ouverte aujourd'hui, devrait à l'avenir s'ouvrir toute grande : un clone de Ligo, Ligo India, doit être installé bientôt en Inde, les Japonais terminent la construction de leur propre télescope gravitationnel, Kagra, dans la mine de Kamioka, à côté du détecteur de neutrinos SuperKamiokande, et l'Europe, après ce spectaculaire succès, devrait bientôt donner le feux vert au télescope Einstein, un « super Virgo » actuellement à l'étude.

L'astronomie gravitationnelle promet d'observer les événements les plus violents de l'Univers, jusqu'ici demeurés invisibles : c½ur d'étoiles supergéantes s'effondrant en trous noirs, fusions d'étoiles et fusions de trous noirs, chutes d'étoiles dans des trous noirs, ou encore fusions de trous noirs galactiques... Un rêve de physicien : comprendre mieux les trous noirs et leurs propriétés étranges, découvrir, peut-être, un écart de leur comportement à la loi d'airain d'Einstein, écrire, enfin, les premières pages d'une nouvelle physique... A plus long terme, c'est même le premier souffle de l'Univers, le « Aum » originel, émis au moment même du big bang, dont les télescopes gravitationnels pourraient entendre l'écho,
partout dans le ciel.

Les 2 trous noirs impliqués ont fusionné à une vitesse de 200.000 km/s,
soit les 2/3 de la vitesse de la lumière.
.
.